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The notation used have their usual meaning unless stated otherwise.
State clearly the results that you assume.

1. (a) Consider a family of distributions f(x, θ), θ ∈ Θ. Define (i) sufficient statistics, (ii) complete
statistic and (iii) ancillary statistic for θ.

(b) Suppose X1, X2, · · ·Xn is a random sample from f(x, θ) = (1/θ)exp(−x/θ). Show that

(i) T (X) =
∑n

i=1 Xi is sufficient for θ.

(ii) U(X) = Xn/T (X) is an ancillary statistics for θ.

(c) If T is a complete sufficient statistics for a family of distributions f(x, θ), θ ∈ Θ and V is an
ancillary statistic then show that V is independent of T .

(d) Assuming that T (X) of Q(b)(i) is complete, find E[U(X)].

[3x3 + (3+5) + 7 + 10 = 34]

2. Suppose X1, X2, · · ·Xn is a random sample from a normal (µ, σ2) population. Let X
∼

= (X1, X2, · · ·Xn).

(a) Find maximum likelihood estimators of µ and σ2 and check whether they are unbiased.

(b) Prove that T (X) = X̄ and U(X) =
∑n

i=1(Xi − X̄)2 are independent. [Hint : use an orthogonal
transformation Y

∼
= OX

∼
, such that Y1 =

√
nX̄.]

(c) Find the distribution of U(X) =
∑n

i=1(Xi − X̄)2/σ2. Using this or otherwise find an unbiased
estimator of (σ2)−1.

(d) Find an unbiased estimator of µ2.

(e) Find an unbiased estimator of µ2/σ2. [Hint : Use (b) and (c)].

[(4+4) + 6 + (5+5) + 6 + 8 = 38]

3. (a) Define (a) the level and the (b) the size of a test. When is a test said to be more powerful than
another one?

(b) Consider a random variable X with p.d.f f(x, θ). Consider the testing problem H0 : θ = θ0

against H1 : θ = θ1.

(i) Show that there always exist a size α test φ which rejects H0 if the ratio f(x, θ1)/f(x, θ0) is too
large.

(ii) Show that φ of Q(i) is most powerful among all size α tests.

[3x2 + (6+10) = 22]

4. (a) When is a family of densities f(x, θ), θ ∈ Θ said to have monotone likelihood ratio (MLR) in
T (X) ? When is a test said to be uniformly most powerful?

(b) Suppose the family of densities f(x, θ), θ ∈ Θ have MLR in T (X) ? Consider the testing problem
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H0 : θ = θ0 against H1 : θ > θ0.

Derive an uniformly most powerful test of size α test for this problem.

[4x2 + 12 =20]

5. Define uniformly most accurate (UMA) lower confidence bound with confidence level 1 − α of a
parameter θ. Suppose X is a continuous random variable having p.d.f f(x, θ). Suppose we want
to find an UMA lower confidence bound for θ with confidence level 0.95. Consider an appropriate
one-sided testing problem for θ. Show how you can find the required UMA lower confidence bound
using the uniformly most powerful test of level 0.05 for this testing problem.

[4 + 14=18]
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